vortexasdk.endpoints.freight_pricing_timeseries
Try me out in your browser:
FreightPricingTimeseries
FreightPricingTimeseries(self)
search
FreightPricingTimeseries.search(self, time_min: datetime.datetime = datetime.datetime(2021, 9, 1, 0, 0), time_max: datetime.datetime = datetime.datetime(2021, 11, 1, 0, 0), routes: Union[List[str], str] = None, breakdown_frequency: str = None, breakdown_property: str = None) -> vortexasdk.endpoints.timeseries_result.TimeSeriesResult
Time series of the selected pricing information for given routes in the specified time range.
Arguments
-
time_min: The UTC start date of the time filter.
-
time_max: The UTC end date of the time filter.
-
breakdown_frequency: Must be one of:
'day'
,'week'
,'doe_week'
,'month'
,'quarter'
or'year'
. -
breakdown_property: Property used to build the value of the aggregation. Must be one of the following:
route
,cost
,tce
. -
routes: Used to filter by specific routes. Must be one of the following:
- Clean routes -
TC1
,TC2_37
,TC5
,TC6
,TC7
,TC8
,TC9
,TC10
,TC11
,TC12
,TC14
,TC15
,TC16
,TC17
,TC18
,TC19
. - Dirty routes -
TD1
,TD2
,TD3C
,TD6
,TD7
,TD8
,TD9
,TD12
,TD14
,TD15
,TD17
,TD18
,TD19
,TD20
,TD21
,TD22
,TD23
,TD24
,TD25
,TD26
. - BLPG routes -
BLPG1
,BLPG2
,BLPG3
.
- Clean routes -
Returns
TimeSeriesResult
Example
Time series for the WS rate of the TD3C route between 1st and 15th November 2021.
>>> from vortexasdk import FreightPricingTimeseries
>>> from datetime import datetime
>>> start = datetime(2021, 11, 1)
>>> end = datetime(2021, 11, 15)
>>> df = (FreightPricingTimeseries().search(
... time_min=start,
... time_max=end,
... routes=['TD3C'],
... breakdown_property='rate',
... breakdown_frequency='day')
... .to_df()).head(2)
Gives the following:
key | value | count | |
---|---|---|---|
0 | 2021-11-01 00:00:00+00:00 | 46.04999923706055 | 1 |
1 | 2021-11-02 00:00:00+00:00 | 45.13999938964844 | 1 |