vortexasdk.endpoints.vessel_summary
Try me out in your browser:
VesselSummary
VesselSummary(self)
Vessels endpoint.
search
VesselSummary.search(
vessel_id: typing.Union[str, typing.List[str], NoneType] = None,
vessel_class: typing.Union[str, typing.List[str], NoneType] = None,
timestamp: typing.Optional[str] = None)
Find all latest summary of vessels matching given search arguments. Search arguments are combined in an AND manner.
Arguments
-
timestamp: The earliest timestamp before which you'd like your summaries sourced from
vessel_id: ID or IDs of vessels we'd like to search
vessel_class: vessel_class (or list of vessel classes) we'd like to search. This will give you summaries for all vessels within this class. Each vessel class must be one of
"oil_coastal", "oil_intermediate", "oil_flexi", "oil_handysize", "oil_mr1","oil_handymax", "oil_mr2", "oil_panamax", "oil_lr1", "oil_aframax", "oil_lr2", "oil_suezmax","oil_lr3", "oil_vlcc","lpg_coasters", "lpg_handysize", "lpg_mgc", "lpg_lgc", "lpg_vlgc", "lpg_vlec", "lng_small_scale_lng", "lng_mid_scale_lng", "lng_two_stroke", "lng_tfde_dfde", "lng_steam", "lng_ssd", "lng_q_flex", "lng_q_max", "oil_coastal", "oil_specialised", "oil_handysize_mr1", "oil_handymax_mr2", "oil_panamax_lr1", "oil_aframax_lr2", "oil_suezmax_lr3", "oil_vlcc","lpg_sgc", "lpg_mgc", "lpg_lgc", "lpg_vlgc_vlec","lng_small_scale_lng", "lng_mid_scale_lng","lng_conventional_lng", "lng_q_fleet", "oil", "lpg", "lng",
. Refer to VortexaAPI Vessel Entities for the most up-to-date list of vessel classes.
Returns
List of vessel summaries matching the search arguments.
Examples
- Let's find all summaries for all Aframax and VLCC_PLUS vessels, from the week prior to October 31st, 2023.
>>> from vortexasdk import VesselSummary
>>> vessel_summary_df = VesselSummary().search(vessel_class=['oil_aframax', 'oil_vlcc'], timestamp='2023-10-31T23:59:59.000Z').to_df(columns=['vessel_id', 'timestamp', 'lat', 'lon', 'speed', 'heading', 'declared_destination', 'draught'])
vessel_id | lat | lon | timestamp | speed | heading | declared_destination | draught | |
---|---|---|---|---|---|---|---|---|
0 | bc49bed3d600b394 | 17.36560 | -161.39080 | 2023-10-31T23:57:11.000Z | 19.299 | 308 | >JP KZU XX | 11 |
...to >800 results |
Note that we will show you all fields by default if you don't set the columns argument.
Further Documentation
VortexaAPI Vessel Summary Reference
vortexasdk.endpoints.vessel_summary_result
VesselSummaryResult
VesselSummaryResult(*, records: typing.List,
reference: typing.Dict[str, typing.Any])
Container class that holds the result obtained from calling the Vessel-Summary
endpoint.
model_config
to_list
VesselSummaryResult.to_list()
Represent vessel summaries as a list.
to_df
VesselSummaryResult.to_df(
columns:
typing.Union[typing_extensions.Literal['all'], typing.List[str], NoneType] = ['vessel_id', 'timestamp', 'lat', 'lon', 'speed', 'draught', 'declared_destination', 'declared_eta']
)
Represent vessel summaries as a pd.DataFrame
.
Arguments
- columns: The vessel summaries we want in the dataframe. Enter
columns='all'
to include all features. Defaults tocolumns = ['vessel_id', 'timestamp', 'lat', 'lon', 'speed', 'draught', 'declared_destination', 'declared_eta']
.
Returns
pd.DataFrame
of vessel summaries.