vortexasdk.endpoints.attributes
Try me out in your browser:
Attributes
Attributes(self)
Attributes endpoint.
An Attribute is a reference value that corresponds to an ID associated with other entities.
For example, a vessel object from the Vessel reference endpoint may have the following keys:
{
"ice_class": "b09ed4e2bd6904dd",
"propulsion": "3ace0e050724707b"
}
These IDs represent attributes which can be found via the Attributes reference endpoint.
When the attributes endpoint is searched with those ids as parameters:
>>> from vortexasdk import Attributes
>>> df = Attributes().search(ids=["b09ed4e2bd6904dd", "3ace0e050724707b"]).to_df()
Returns
| id | type | label | |
|---|---|---|---|
| 0 | b09ed4e2bd6904dd | ice_class | UNKNOWN |
| 1 | 3ace0e050724707b | propulsion | DFDE |
load_all
Attributes.load_all()
Load all attributes.
search
Attributes.search(
type: typing.Optional[str] = None,
term: typing.Union[str, typing.List[str], NoneType] = None,
ids: typing.Union[str, typing.List[str], NoneType] = None)
Find all attributes matching given type.
Arguments
- type: The type of attribute we're filtering on. Type can be:
ice_class,propulsion,scrubber
Returns
List of attributes matching type
Examples
Find all attributes with a type of ice_class.
>>> from vortexasdk import Attributes
>>> df = Attributes().search(type="scrubber").to_df()
returns
| id | name | type | |
|---|---|---|---|
| 0 | 14c7b073809eb565 | Open Loop | scrubber |
| 1 | 478fca39000c49d6 | Unknown | scrubber |
vortexasdk.endpoints.attributes_result
AttributeResult
AttributeResult(*, records: typing.List,
reference: typing.Dict[str, typing.Any])
Container class that holds the result obtained from calling the Attributes endpoint.
model_config
to_list
AttributeResult.to_list()
Represent attributes as a list.
to_df
AttributeResult.to_df(
columns:
typing.Union[typing_extensions.Literal['all'], typing.List[str], NoneType] = ['id', 'name', 'type']
)
Represent attributes as a pd.DataFrame.
Arguments
- columns: The attributes features we want in the dataframe. Enter
columns='all'to include all features. Defaults tocolumns = ['id', 'name', 'type'].
Returns
pd.DataFrame of attributes.