vortexasdk.endpoints.attributes
Try me out in your browser:
Attributes
Attributes(self)
Attributes endpoint.
An Attribute is a reference value that corresponds to an ID associated with other entities.
For example, a vessel object from the Vessel reference endpoint may have the following keys:
{
"ice_class": "b09ed4e2bd6904dd",
"propulsion": "3ace0e050724707b"
}
These IDs represent attributes which can be found via the Attributes reference endpoint.
When the attributes endpoint is searched with those ids as parameters:
>>> from vortexasdk import Attributes
>>> df = Attributes().search(ids=["b09ed4e2bd6904dd", "3ace0e050724707b"]).to_df()
Returns
id | type | label | |
---|---|---|---|
0 | b09ed4e2bd6904dd | ice_class | UNKNOWN |
1 | 3ace0e050724707b | propulsion | DFDE |
load_all
Attributes.load_all(self) -> vortexasdk.endpoints.attributes_result.AttributeResult
Load all attributes.
search
Attributes.search(self, type: str = None, term: Union[str, List[str]] = None, ids: Union[str, List[str]] = None) -> vortexasdk.endpoints.attributes_result.AttributeResult
Find all attributes matching given type.
Arguments
- type: The type of attribute we're filtering on. Type can be:
ice_class
,propulsion
,scrubber
Returns
List of attributes matching type
Examples
Find all attributes with a type of ice_class
.
>>> from vortexasdk import Attributes
>>> df = Attributes().search(type="scrubber").to_df()
returns
id | name | type | |
---|---|---|---|
0 | 14c7b073809eb565 | Open Loop | scrubber |
1 | 478fca39000c49d6 | Unknown | scrubber |
vortexasdk.endpoints.attributes_result
AttributeResult
AttributeResult(__pydantic_self__, **data: Any) -> None
Container class that holds the result obtained from calling the Attributes
endpoint.
to_list
AttributeResult.to_list(self) -> List[vortexasdk.api.attribute.Attribute]
Represent attributes as a list.
to_df
AttributeResult.to_df(self, columns=['id', 'name', 'type']) -> pandas.core.frame.DataFrame
Represent attributes as a pd.DataFrame
.
Arguments
- columns: The attributes features we want in the dataframe. Enter
columns='all'
to include all features. Defaults tocolumns = ['id', 'name', 'type']
.
Returns
pd.DataFrame
of attributes.