vortexasdk.endpoints.asset_tanks
Try me out in your browser:
AssetTanks
AssetTanks(self)
Asset Tanks endpoint.
An Asset Tank is a reference value that corresponds to an ID associated with other entities.
For example, an Asset Tank object may have the following keys:
{
"name": "AAM001",
"storage_type": "tdb"
"crude_confidence": "confirmed"
...
}
IDs represent asset tanks which can be found via the Asset Tank reference endpoint.
When the asset tanks endpoint is searched with those ids as parameters:
>>> from vortexasdk import AssetTanks
>>> df = AssetTanks().search(ids=["6114b93026e61993797db33a46a5d2acbeacdbd63238a4271efaeafcee94b1d2"]).to_df()
Returns
id | capacity_bbl | crude_confidence | location_id | name | storage_type | lat | lon | |
---|---|---|---|---|---|---|---|---|
0 | 6114b93026e61993797d... | 645201 | confirmed | b839dc5fee39ff7efd5e1cf2494... | AAM001 | tbd | 90 | 180 |
load_all
AssetTanks.load_all()
Load all asset tanks.
search
AssetTanks.search(
ids: typing.Union[str, typing.List[str], NoneType] = None,
corporate_entity_ids:
typing.Union[str, typing.List[str], NoneType] = None,
crude_confidence: typing.Optional[typing.List[str]] = None,
location_ids: typing.Union[str, typing.List[str], NoneType] = None,
storage_type: typing.Optional[typing.List[str]] = None,
term: typing.Union[str, typing.List[str], NoneType] = None)
Find all asset tanks matching given type.
Arguments
ids: An array of unique Asset Tanks ID(s) to filter on.
corporate_entity_ids: An array of owner ID(s) to filter on.
crude_confidence: An array of confidence metrics to filter on. Possible values are: `'confirmed’`, `‘probable’`, `‘unlikely’`
location_ids: An array of geography ID(s) to filter on.
storage_types: An array of storage types to filter on. Possible values are: `'refinery'`, `'commercial'`, `'spr'`
Returns
List of asset tanks matching type
Examples
Find all asset tanks with a storage_type of refinery
.
>>> from vortexasdk import AssetTanks
>>> df = AssetTanks().search(storage_type=["refinery"]).to_df()
Returns
id | capacity_bbl | crude_confidence | location_id | name | storage_type | lat | lon | |
---|---|---|---|---|---|---|---|---|
0 | 0a736a1816c0fea49a88... | 104815 | probable | f726416f49adcac6d5d296c49a00... | HOM009 | refinery | -60 | 24 |
1 | b96adfb025a719b66927... | 139279 | unlikely | f726416f49adcac6d5d296c49a00... | HOM022 | refinery | 100 | -90 |
vortexasdk.endpoints.asset_tanks_result
AssetTankResult
AssetTankResult(*, records: typing.List,
reference: typing.Dict[str, typing.Any])
Container class that holds the result obtained from calling the Asset Tanks
endpoint.
model_config
to_list
AssetTankResult.to_list()
Represent asset tanks as a list.
to_df
AssetTankResult.to_df(
columns:
typing.Union[typing_extensions.Literal['all'], typing.List[str], NoneType] = ['id', 'capacity_bbl', 'crude_confidence', 'location_id', 'name', 'storage_type', 'lat', 'lon']
)
Represent asset tanks as a pd.DataFrame
.
Arguments
- columns: The asset tanks features we want in the dataframe. Enter
columns='all'
to include all features. Defaults tocolumns = ['id', 'capacity_bbl', 'crude_confidence', 'location_id', 'name', 'storage_type', 'lat', 'lon']
.
Returns
pd.DataFrame
of asset tanks.